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QM as a statistical theory (quasi à la von Neumann 1927) : 

 

statistical ensemble(s) ρ 

measurement procedures I, J 

outcomes oI,oJ
 

expectation values <oI>ρ, <oJ> ρ 

 

 

 

 



IF QM is complete, then (operationally defined) ensembles 

corresponding to pure quantum states are statistically 

homogeneous: 

 

If   ρ = ασ + (1-α)τ  (0<α<1) 

then   <oI> σ = <oI> τ   for all I 

 

 

 

 



If QM is incomplete, there is the possibility of decomposing 

ensembles by means of additional variables: 

ρ = ασ + (1-α)τ 

But it could still be the case that the thus defined ensembles 

have the same statistical properties as the original ensemble: 

<oI> σ = <oI> τ   for all I 

 

If so, we call such a h.v. theory trivial. 

 

 



Without constraints on h.v. theories, one can easily construct 

even deterministic ones (in which the hidden variables λ 

completely fix the outcomes of all measurements), e.g. h.v. 

are the outcomes of all possible measurements, distributed 

with the product of the quantum probabilities. 

Two famous examples of constraints: expectation values are 

the same for all measurement procedures corresponding to 

the same quantum observables; additionally, they are linear 

with respect to the algebraic structure of the quantum 

observables. 

 



With these constraints, it follows that ensembles 

corresponding to pure quantum states are indeed 

homogeneous (Gleason 1957, von Neumann 1927). 

 

But maybe question-begging (Grete Hermann 1935). 

 

Better: locality constraints. 

 

 

 



Bipartite measurements:  oIJ = (aIJ, bIJ) 

 

No-signalling: < aIJ > ρ = < aIJ’ > ρ and  < bIJ > ρ = < bI’J > ρ 

 

No-signalling in principle (parameter independence): 

     < aIJ > λ = < aIJ’ > λ and  < bIJ > λ = < bI’J > λ 

 

 

 

 



Theorems based on no-signalling in principle: 

(1) Bell (1964): any deterministic h.v. theory has signalling 

in principle. 

(2) Bell (1971): any ‘outcome-independent’ h.v. theory has 

signalling in principle. 

(3) CRL (Colbeck and Renner 2010, 2011; Leegwater 2016): 

any non-trivial h.v. theory has signalling in principle. 

 

 

 

 



Two standard readings: 

• ‘bad’ signalling rules out h.v. theories 

• signalling is a striking feature of h.v. theories 

N.B. The latter reading (Bell’s) suggests a (remote) possibility 

of investigating h.v. theories experimentally.  

 

But all these theorems assume also settings-source 

independence: in an ensemble ρ corresponding to some 

quantum state, the distribution ρ(λ) of hidden variables is 

independent of I,J.   

 



Example: Bell (1964). Since the h.v. theory is deterministic, 

we have definite outcomes aIJ
λ and bIJ

λ. Now consider  

aIJ
λbIJ

λ + aI’J
λbI’J

λ + aIJ’
λbIJ’

λ - aI’J’
λbI’J’

λ   (*) 

Assume no-signalling in principle, i.e.  

 aI
λ := aIJ

λ = aIJ’
λ  and bJ

λ := bIJ
λ = bI’J

λ 

Then (*) becomes 

aI
λbJ

λ + aI’
λbJ

λ + aI
λbJ’

λ - aI’
λbJ’

λ 

Averaging terms separately with ρIJ(λ), ρI’J(λ), ρIJ’(λ), ρI’J’(λ) 

yields a result in [-4,+4]. Only averaging them simultaneously 

with ρ(λ) yields a result in [-2,+2] that fails to reach the 

quantum bound.  



And similarly for Bell (1971) and for CRL. 

But it surely ought to be possible to prove such results even 

without settings-source independence. 

After all, with settings-source dependence, different J, J’ 

mean different ρIJ(λ), ρIJ’(λ), and thus in general presumably 

different probabilities on Alice’s side. 

 

Indeed, our theorem is that any non-trivial h.v. theory with 

or without settings-source independence leads to signalling. 

Most crucial bit: careful formulation. 

 



In the general case of settings-source dependence, the same 

preparation procedure yields different distributions ρIJ(λ) of 

hidden variables, which collectively reproduce the quantum 

predictions for all I,J. 

 

Now imagine a hypothetical preparation procedure that 

prepares not only an ensemble ρ that exhibits the statistics 

predicted by quantum mechanics, but also decomposes it 

non-trivially into two sub-ensembles: ρ = ασ + (1-α)τ. 

   

 



If we have a h.v. theory with settings-source dependence 

then for each I,J this same procedure will produce a different 

distribution ρIJ(λ) and a different pair of sub-distributions 

σIJ(λ) and τ IJ(λ),  all of them satisfying  

ρIJ(λ) = ασIJ(λ) + (1-α)τ IJ(λ) 

 

And when we write < aIJ > ρ , < bIJ > σ , ..., we mean 

< aIJ > ρIJ(λ) , < bIJ > σIJ(λ) , ... 

[Of course, in the special case in which ρIJ(λ) = ρ(λ) etc., the 

operationally defined ensembles ρ, σ, τ always correspond  

to the same theoretical distribution ρ(λ), σ(λ), τ(λ).] 



The statement of the theorem is now: 

For all hypothetical procedures preparing non-trivial        

non-quantum decompositions of a quantum ensemble 

ρ = ασ + (1-α)τ  (0<α<1), 

if σ (and therefore τ) are non-signalling, i.e. if for all I,I’,J,J’ 

< aIJ > σ = < aIJ’ > σ  and  < bIJ > σ = < bI’J > σ, 

then the h.v. theory is trivial, i.e. for all I,J 

< aIJ > σ = < aIJ > τ  and  < bIJ > σ = < bIJ > τ. 

 

 



And the proof is also trivial. 

 

 

 

 

 

 

 

 

 



And the proof is also trivial. 

 

Indeed, (1) we have already implicitly assumed that α is 

independent of I,J.  

(Otherwise, we would have a straightforward case of 

macroscopic signalling from the settings to the source, and 

we could relay signals between Alice and Bob faster than 

light.) 

 

 

 



But then, (2) we can formally label σ and τ with the values of 

a binary hidden variable ξ, whose distribution is now source-

independent. 

Further, (3) no-signalling for σ and τ means parameter 

independence for this new hidden variables theory. 

But now, (4) by the standard CRL theorem, this new h.v. 

theory is trivial, which means our original, possibly settings-

source-dependent h.v. theory is trivial.      

QED 

 

 



Settings-source dependence is generally neglected, perhaps 

because it seems crazy.  

There are three options: 

• hidden variables influence the settings 

• settings influence the hidden variables (retrocausality) 

• some common cause in the distant past influences both 

settings and hidden variables (superdeterminism) 

 

 

 



The first option is clearly to be ruled out (one can ensure 

experimentally that something else determines the settings). 

But the other two have some definitely non-crazy champions 

(respectively, Huw Price and Gerard ’t Hooft). 

And, indeed, standard objections (insistence on ‘free will’, 

prejudices against retrocausality) are of a dubious nature. 

 

 

 

 



Superdeterminism may seem conspiratorial, but maybe only 

because we have not imagined a mechanism yet that makes 

it look natural. 

And retrocausality is the only option that is compatible with 

any notion of free will one might espouse. 

Crucially, both approaches appear to allow for Lorentz-

invariant implementation, precisely because they lack action 

at a distance. 

 

 

 



Finally, both approaches provide seemingly unassailable 

loopholes for the Bell experiments. 

Extending the non-locality theorems opens the (very remote) 

possibility of a direct empirical investigation also of these 

approaches. 
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